a型白羊男(A型白羊男配对)
赫罗图是恒星的光谱类型与光度之关系图,赫罗图的纵轴是光度与绝对星等,而横轴则是光谱类型及恒星的表面温度,从左向右递减。恒星的光谱型通常可大致分为 O.B.A.F.G.K.M 七种。
赫罗图的横坐标有时用恒星的表面温度表示,有时也用恒星的光谱型表示,因为光谱型和表面温度之间存在着对应的关系。恒星是一团炽热的气体,是一团被自身引力束缚的气体,它们的中心区域密度和温度都特别高,足以产生热核反应。恒星表面的高温使之发射类似黑体辐射一样的光谱。在很宽的频率范围内都有辐射,因此称为连续谱。光谱曲线的峰值和形状由物体的温度决定。不同频率的光,其颜色不同。恒星的颜色多种多样,从恒星的颜色就可以判断出它们的温度。温度用绝对温度K表示,绝对温度与摄氏温度的换算关系是0°C=273K。表面温度在绝对温度30000K以上的恒星发蓝光,温度在10000~30000K的恒星颜色蓝白,温度在7500~10000K的恒星颜色纯白,6000~7500K的恒星呈黄白色,温度在5000~6000K时,恒星的颜色发黄,温度在3500~5000K时恒星的颜色为红橙,温度在2000~3500K的恒星颜色发红。
恒星的光谱除了连续谱以外,还有两种线状谱,分别是发射线和吸收线。它们是叠加在连续谱上的亮线和暗线。炽热到一定程度的稀薄气体原子会发射特定频率的光子,形成发射线;而较冷的稀薄气体的原子则可能吸收通过它的连续光谱中的特定频率的光子而形成暗的吸收线。不同的物质会有不同的吸收线或发射线。测量这些谱线,可以得到恒星的化学成分的信息。从地球实验室的光谱实验中得知,氢、氧、碳等轻元素的光谱线主要在紫外,肉眼看不见,只有几条谱线在可见光区。较重的元素的谱线大部分在可见光区。恒星的外层,如太阳的光球,其温度远比内层低,因此其中的物质就会对内部来的连续谱辐射进行选择吸收,而形成许多暗黑的吸收线。在恒星表面大气中的某些元素的原子产生发射线要求温度相当高,一般不容易达到,因此有发射线的恒星比较少。有吸收线的恒星则很普遍,只不过有的多些有的少些。也有一些恒星光谱呈现有分子带谱线。
天文学家根据恒星的吸收线光谱特征来进行分类。最著名的分类法由哈佛大学天文台的天文学家提出的,称为哈佛分类法。他们根据240000颗恒星的吸收光谱资料,把它们分为七大类:O型、B型、A型、F型、G型、K型和M型,在G型和K型中,又有三个子型,即R型、N型和S型。O型为蓝星;B型为蓝白星;A型为白星;F型为黄白星;G型为黄星;K型为橙红星;M型为红星。这种光谱型分类的顺序恰好是恒星表面温度从高到低的序列。对应的表面温度为O型为40000-25000K;B型为25000-12000K;A型为11500-7700K;F型为7600-6100K;G型为6000-5000K;K型为4900-3700K;M型为3600-2600K。天文学家曾认为,这 一序列代表了恒星的从高温到低温的演化,把O型和B型称之为早型星,把K型和M型称为晚型星。后来知道,这个看法并不正确。
从赫罗图上可以看出,恒星主要集中在四个区域。第一个区域为主星序区:银河系中90%以上的恒星都分布在从左上到右下的这一条带子上。这个带上的恒星,有效温度愈高的,光度就愈大。这些星被称为主序星,又称矮星。第二个区域在主星序右上方:这些恒星的温度和某些主序星的一样,但光度却高得多,因此称之为巨星或超巨星。第三个区域在主星序左下方:是一些温度高而光度低白矮星,以及其它低光度恒星,第四个区域位于赫罗图上一个很右的位置:温度非常冰冷的星际云在最右边,当星际云收缩,它会变得越来越热,在赫罗图上的位置亦会向左移动。由星际云形成的原恒星也在赫罗图的右边。赫罗图是由恒星的光学观测数据构成的,因此中子星和黑洞不能在赫罗图上显现。在赫茨普龙和罗素最初给出的赫罗图中,没有第三和第四个区域,因为那时还没有发现白矮星,也没有讨论恒星的形成。
赫罗图在恒星演化的研究当中十分重要。由于恒星内部能源的不断消耗,恒星要发生演变,光度和温度都要发生变化,这导致在赫罗图上的位置发生变化。天文学家根据赫罗图描绘了恒星从诞生、成长到衰亡的演化路径,并从理论上给出恒星从诞生到主序星、红巨星、变星、新星、超新星、致密星的演化机制和模型。
从赫罗图上可以看出,恒星主要集中在四个区域。第一个区域为主星序区:银河系中90%以上的恒星都分布在从左上到右下的这一条带子上。这个带上的恒星,有效温度愈高的,光度就愈大。这些星被称为主序星,又称矮星。第二个区域在主星序右上方:这些恒星的温度和某些主序星的一样,但光度却高得多,因此称之为巨星或超巨星。第三个区域在主星序左下方:是一些温度高而光度低白矮星,以及其它低光度恒星,第四个区域位于赫罗图上一个很右的位置:温度非常冰冷的星际云在最右边,当星际云收缩,它会变得越来越热,在赫罗图上的位置亦会向左移动。由星际云形成的原恒星也在赫罗图的右边。赫罗图是由恒星的光学观测数据构成的,因此中子星和黑洞不能在赫罗图上显现。在赫茨普龙和罗素最初给出的赫罗图中,没有第三和第四个区域,因为那时还没有发现白矮星,也没有讨论恒星的形成。
赫罗图在恒星演化的研究当中十分重要。由于恒星内部能源的不断消耗,恒星要发生演变,光度和温度都要发生变化,这导致在赫罗图上的位置发生变化。天文学家根据赫罗图描绘了恒星从诞生、成长到衰亡的演化路径,并从理论上给出恒星从诞生到主序星、红巨星、变星、新星、超新星、致密星的演化机制和模型。
赫罗图可显示恒星的演化过程,大约90%的恒星位于赫罗图左上角至右下角的带状上,这条线称为主序带。位于主序带上的恒星称为主序星。形成恒星的分子云是位于图中极右的区域,但随着分子云开始收缩,其温度开始上升,会慢慢移向主序带。恒星临终时会离开主序带,恒星会往右上方移动,这里是红巨星及红超巨星的区域,都是表面温度低而光度高的恒星。经过红巨星但未发生超新星爆炸的恒星会越过主序带移向左下方,这里是表面温度高而光度低的区域,是白矮星的所在区域,接着会因为能量的损失,渐渐变暗成为黑矮星。
物理学家在研究热辐射光谱的时候,发现了在一个单位面积上,亮度与温度之间的关系。温度越高亮度越亮。因此,一旦我们能够决定一个星球的绝对星等和光谱类型,我们就能估计它的体积大小。单位时间内,在单位面积中所释放出来的热辐射能量与温度四次方成正比。亮度为单位时间内热辐射所发出来的能量,所以将上式乘上星球总面积,假设星球为球形:所以在赫罗图上,也可以把相同表面积的星球,出现的位置用连线标示出来。我们可以看到,在图的右上方,低温且高亮度,所以是体积很大的星球。越往左下方高温且低亮度,所以体积越来越小。
由于一个星团中的恒星距离基本一致(或者一个遥远星系中的星团距离基本一致),因此可以用视星等取代绝对星等作为纵轴绘制星团中成员恒星的赫罗图或者遥远星系中成员恒星的赫罗图。星团赫罗图与标准赫罗图的比较,可以帮助估计星团的实际距离。
与本文知识点相关的文章: